
General Temporal Knowledge for Planning and

Data Mining

Robert Morris (1) Lina Khatib (2)
(1) Research Institute for Advanced Computer Science

(2) Kestrel Technology
NASA Ames Research Center

Mo�ett Field, CA 94035
fmorris,linag@ptolemy.arc.nasa.gov

Abstract

We consider the architecture of systems that combine temporal plan-

ning and plan execution and introduce a layer of temporal reasoning that

potentially improves both the communication between humans and such

systems, and the performance of the temporal planner itself. In particular,

this additional layer simultaneously supports more
exibility in specify-

ing and maintaining temporal constraints on plans within an uncertain

and changing execution environment, and the ability to understand and

trace the progress of plan execution. It is shown how a representation

based on single set of abstractions of temporal information can be used

to characterize the reasoning underlying plan generation and execution

interpretation. The complexity of such reasoning is discussed.

1 Introduction

As AI systems continue to mature, they are more often found supporting real

world applications. These applications commonly require the performance of a

multitude of intelligent tasks. For example, planning systems 1 are currently

often found in automated or limited mixed-initiative systems that combine plan

generation and execution [18], [5]. Designing and developing representations for

such continual planning systems raise challenging issues in temporal reasoning.

For example, can a single representation of time be used for both plan generation

and automated control of execution? Similarly, can a single representation of

time be used by an automated system to formulate long-range plans to be

1Although plans are often distinguished from schedules in the literature, the distinction is

not important for our purposes here; consequently, the notion of "planning" used here should

be interpreted broadly enough to include scheduling.

executed automatically, and to interpret and summarize their execution based

on stored traces? It is the latter question that is addressed and answered here.

The planning problems of interest here can be formulated as those involving

a number of tasks, many to be executed a number of times during the planning

period, as well as constraints on those tasks, and possibly an objective to be

optimized. There is uncertainty and uncontrollability in the execution environ-

ment, as well as incompleteness in the temporal domain model. The planner

must continuously generate plans for executing these tasks continuously over

time.

The following are examples of this kind of planning problem:

1. Telescope Observation Scheduling [3] Telescope time for the purpose

of observing time-varying phenomena (e.g. eclipsing binary stars) is re-

quested by an astronomer. An astronomer's scienti�c agenda (e.g., to �ll

out a light curve for a binary star system), imposes various constraints;

for example, on the number of observations and on the number of nights

between successive observations. Thus, an astronomer might request that

a given number of repeated observations (speci�ed by an ideal and min-

imum occurrence count) be executed within a given time window with a

given time gap between observations. The ideal gap (in days) is speci-

�ed either with a �xed gap length or a gap probability distribution (in

order to reduce aliasing in the data or determine the period of a recently

discovered variable star). An example of a gap probability distribution

would be expressed as \gaps should be randomly selected with a uniform

probability from the set f 0 days, 1 day, 2 days g".

2. Maintenance Scheduling of Power Generating Units [9] A power

plant consists of a number of power generating units which can be in-

dividually scheduled for preventive maintenance. The duration of each

unit's maintenance period and the power demand of the plant are known.

The maintenance scheduling problem is to determine the duration and

sequence of outages of power generating units over a given period, subject

to various constraints.

3. Planning Autonomous Spacecraft Operations In this planning

problem, [18], there are a set of tasks involving some operation of the

spacecraft, each associated with an interval of time. Each interval of a

given type must satisfy a contextual constraint (called a compatibility)

that is speci�c to the type. The contextual constraint surrounds the given

primary interval with a set of satellite intervals of speci�ed types that

stand in speci�ed temporal relationships to the primaries. For example,

every occurrence of a Thrust(B) interval (thrust in direction B) must be

contained by some occurrence of a Point(B) (point in direction B) interval.

The formulation of each of these problems involves a speci�cation of a set

of events including many that will, in any solution to the problem, have multi-

ple occurrences (e.g., observing a particular star, performance of a maintenance

task for a generating unit, thrusting in a certain direction). The total number

of occurrences of such an event cannot always be said to be known in advance;

for example, it might be the case that the system is to maximize the number

of occurrences of the event. Similarly, constraints on those events are meant to

apply to any occurrence of those events; for example, in the telescope problem,

the gap constraint is meant to apply to each gap between observation occur-

rences. In this paper, constraints associated with events that will have multiple

instances in any solution are called general constraints, since they are naturally

formalized as quanti�ed formulae over temporal objects.

This paper addresses potential requirements of temporal reasoning systems

that perform continual planning. Speci�cally, to ensure the ability to continually

generate useful and robust plans, it might be necessary to have a mechanism

for evaluating segments of plans previously generated, and, where necessary,

update the temporal domain model used in planning. Relatedly, there should

be a mechanism for automatically summarizing and interpreting the executions

of plans, for purposes such as

� verifying a temporal model of the domain, to ensure that the constraints

identi�ed for the problem are correct and complete; and

� identifying interesting episodes that reveal unexpected features of the en-

vironment, which can be applied to re�ne the domain model.

A simpli�ed architecture for a system for continual planning is found in Figure 1.

This �gure shows a set of requests that certain tasks be performed, at certain

times, which are collected together in a request database, which is, in turn,

compiled into a set of tasks to be performed. The requests might be inputs from

human users, or some other autonomous system. A plan generator consults this

database, as well as a temporal domain model, and produces input in the form of

a task database. The temporal planner generates a complete plan (represented

in the �gure by a graph of temporal dependencies), or determines that its input

is inconsistent.

The next phase of the planning process involves the execution of a plan.

A plan runner continuously consults the current plan and executes the tasks

that are currently active, i.e., whose conditions for execution are met. (The

actual plan execution process might be quite complex, involving a number of

other human or machine agents.) A trace of the plan execution is kept in a

execution log, time-stamped information about the tasks actually performed.

The log database might also contain information about the e�ects of the plan,

which are observed in the world. An execution analysis tool consults this log,

and generates summaries of the plan execution, and also potentially generates

updates to the temporal domain model. Note that since the focus here is on

time, there are simpli�cations to the overall picture applied here. Planning in

general involves the manipulation of non-temporal constraints, such as resource

Plan

Requests

Task execution

Request
Database

Task
Database

/Schedule

Plan runner

logger

"To do list"

I P J

"P takes I as input and produces J as output"

World

Summary

Temporal
Domain
Model

Execution
Analysis

Execution
Log

Plan Generator

Figure 1: Intelligent continuous planning and execution

constraints, as well as temporal ones. We abstract from considerations of non-

temporal information, but maintain that they can be added by generalizing the

proposed framework to include them.

This paper proposes a single representation of time to support the capabil-

ities just described. The framework integrates previous work in temporal rea-

soning about repeating events, [17], [14], [15], as well as in temporal constraint

reasoning. It also proposes the use of temporal data mining technology in order

to interpret the temporal information found in plan executions. We demon-

strate how a single formalism can simultaneously support plan generation from

general temporal constraints and execution interpretation from execution logs.

The basis for this formalism is a straight-forward and intuitive collection of ab-

stractions of temporal information, based on terminology that is common in the

research literature on constraint-based temporal reasoning. The pivotal level of

abstraction, based on the concept of a \pro�le", is a concise representation of

distance or temporal order information among sets of intervals. Pro�les exhibit

patterns that can be used for determining consistency of a set of constraints,

forming the basis for solving the planning problem, or for detecting useful tem-

poral patterns, useful in formulating expressions of general temporal knowledge

from raw, time stamped data.

The remainder of this paper is structured as follows. In section two, there

is a discussion of the general nature of temporal reasoning, for the purpose of

setting the stage for the remainder of the paper. There is also, in the same sec-

tion, a brief summary of the components of the representational mechanism for

reasoning about general temporal knowledge. In section three, there is a concise

but detailed discussion of the use of this framework for turning general temporal

knowledge into input to temporal constraint reasoners. Finally, in section four,

there is a discussion of how a data mining tool can be designed to generate

general temporal knowledge from traces of executions stored in a
at format

called instantiations, using pro�les as a concise intermediate representation.

2 Framework

Pure temporal reasoning is reasoning about temporal entities such as points or

intervals. The reasoning is used primarily to infer knowledge about temporal lo-

cations, i.e., when something happens, durations (i.e., how long something lasts),

or temporal orderings (i.e., what follows what). Temporal reasoning should be

distinguished from a more broad class of reasoning, which we will call reasoning

about temporal entities. By a temporal entity is meant, roughly, any entity that

can be viewed as being extended in time. Events are the simplest example of a

temporal entity, but there may be others, such as the state of an object, or the

truth of a proposition.

It may seem obvious, but it is worth stating explicitly: one can reason

about temporal entities without the reasoning being temporal in nature. The

Yale Shooting Problem, for example, involves reasoning about events, but the

reasoning is not temporal, since the orderings and durations are either known

(hence, no need to infer them) or unimportant; rather the reasoning is about

the causal e�ects of �ring a gun. Similarly, much of the body of research that

goes under the title temporal data mining does not involve mining temporal

information. For example, time series analysis is a form of temporal data mining,

but the knowledge gained from this analysis is not temporal in nature, i.e.,

it is not about durations or temporal orderings. That part of temporal data

mining which is purely temporal sometimes goes under the heading mining for

interesting episodes [10].

2.1 Pure temporal reasoning

The focus here is on pure temporal reasoning for planning, i.e., reasoning about

things like durations and temporal orderings for the purpose of generating tasks

to perform. Of course, on some level, it is arti�cial to distill pure temporal

reasoning from any real reasoning problem involving temporal entities. In prac-

tice, a model of time is inextricably linked to other kinds of world knowledge,

such as knowledge about space or causality. Nonetheless, traditionally it has

been found useful in mathematics and computer science to study properties of

time independently. From a computational standpoint, the primary purpose of

isolating temporal knowledge is to study the complexity of temporal reasoning

in order to isolate tractable instances of temporal reasoning problems, or to

develop e�cient approximate algorithms for solving such problems. Temporal

reasoning is relevant for proving properties of concurrent systems [24], querying

temporal information [11], or for solving hard planning problems.

Temporal reasoning requires an underlying theory, or model, of time. A

theory of time is a set of assumptions, expressed using a temporal logic, or as

a restricted �rst-order logic. A theory expresses unassailable truths about the

domain of discourse, addressing things like whether time is point- or interval-

based, discrete or continuous, in�nite or �nite in either the past or future, and

linear or branching. Such assumptions may be explicitly stated, or embedded

in the rules and procedures for manipulating propositions about time. A theory

might also state whether the set of occurrences of a temporal entity can be �nite

or in�nite, as well as the granularities of time (minutes, days, weeks, etc.) that

can be expressed in the language. Finally, as we will observe later, a model

of time may formulate answers to common sense questions like \what does it

mean, in general, for two events to occur close together, or frequently"?

The formal approach to be taken here, re
ecting the focus on time used in

planning, can be viewed as an example of a �rst-order treatment of time. In

what follows, propositions about time quantify over intervals. Time is linear and

discrete, and intervals are sets of integers. Events are the only kind of temporal

entity in this model; they can be classi�ed into types. Each event can occur

arbitrarily often; an occurrence of an event is described by the interval associated

with it. Quanti�cation is sorted based on the type of temporal entity. For

example, in the expression 8In 2 IE IE denotes all the occurrences of an event

of type E. Intervals, equivalently event occurrences, have distinguished start

and end times, which can be denoted by the functional expressions s(In); e(In).

For simplicity, intervals in a set IE are assumed to be totally ordered by the

temporal relation before (<); the expression Ij (the jth interval, equivalently,

the jth occurrence of some event) is used to recover this ordering. Where there

is no ambiguity, we often abbreviate In 2 IE to In 2 I .

General temporal knowledge provides information about:

� the cardinality of IE , i.e., the number of times E occurs;

� temporal orderings (before, after, overlap, containment, etc.) between

occurrences; and

� temporal distances between occurrences.

Quanti�cation over intervals is an obvious mechanism for formulating general

temporal knowledge. For example, in addition to being able to state that a pair

of occurrences In and Jm are ordered by the relation meets, we wish also to

be able to say that for each occurrence Ii 2 IE there is an occurrence Jj 2 JF
such that Ii and Jj are ordered by the relation meets (in English, this would

be expressed as Es only meet Fs). Similarly, in addition to saying that the

distance between s(I1) and s(J1) is 3 time units, the distance between s(I2) and

A

B

C

D

E

Time

Figure 2: A set of instantiations.

s(J2) is 4 time units, and s(I3) and s(J3) is 2 time units, we also want to say

that For each Ii 2 I there is a Jj 2 J such that the distance between s(Ii) and

s(Jj) is in the interval [2; 4].

2.2 Representation

The framework here is based on the following succession of abstractions of tem-

poral information:

� An instantiation of a repeating event;

� A pro�le of a repeating event;

� A pro�le summary; and

� A speci�cation.

An example of an instantiation is found in Figure 2. There are �ve events,

labeled A-E, each with a �nite number of non-overlapping occurrences, with

possibly di�erent durations. Notice that the information contained in the �gure

is equivalent to one in which the temporal information is stored in a table or

relation, where each tuple in the relation has the form (X;n1; n2), where X is

the event type, and [n1; n2] is the associated interval describing the time of the

occurrence.

Given an instantiation of a repeating event, duration (temporal distance) in-

formation can be completely represented in the form of a set of pro�les, of which

�ve can be distinguished: four in terms of time point combinations (end-start,

start-start, start-end, and end-end), and one which displays ordering informa-

tion about the intervals. For a �nitely repeating event, each pro�le can be

viewed as a matrix. Figure 3 shows an instantiation of a repeating event with

three occurrences, and three pro�les associated with it. Each value in a pro�le

is the di�erence x(Ij)� y(Ii), where x; y 2 fs; eg, and Im is the mth occurrence

of I . By convention these pro�les are referred to using an expression of the

I

0 3 7

I
 3 10 15
-4 3 8
-9 -2 3

 0 7 12
 -7 0 5
-12 -5 0

II

I

order

I

I

12 1510

e(I)-s(I) s(I)-s(I)

= b b
bi = b
bi bi =

Figure 3: An instantiation of a repeating event and three pro�les.

form x(J) � y(I), where the I 's index the rows of the pro�les, and the J 's the

columns. The other pro�le in the �gure, called the order pro�le, summarizes all

the qualitative temporal relationships between pairs of occurrences of I .

The notion of pro�le can also be used to represent distance or order infor-

mation about pairs of occurrences of distinct repeating events I and J . Each

value of a distance pro�le is a di�erence x(Ij)� y(Jk); x; y 2 fs; eg between an

terminal point (start s or end e) of an occurrence of I and one of J . A value

PI;J [i; j] of an order pro�le is the Allen relation between Ii and Jj . We refer

to each of these pro�les as part of the relative pro�le of two repeating events.

Again, �ve pro�les can be distinguished, and, assuming both repeating events

have �nite cardinality, the information can be depicted in the form of a matrix.

Figure 4 illustrates relative pro�les.

Pro�les have patterns that emerge from the underlying temporal structure

of the repeating event. Such patterns provide the basis for inferring new tem-

poral knowledge, or for extracting temporal information in response to a query.

For example, in a distance pro�le of a �nite repeating event with no overlap-

ping occurrences, each row is a sequence of either monotonically increasing or

decreasing values, as is each column. We call this the monotonicity requirement

of pro�les. Note also that every qualitative pro�le for a non-overlapping se-

quence of intervals consists of a lower-left triangle of b relations, an upper-right

triangle of bi relations, and a diagonal of =. We call this the tri-regional require-

I

J

I

 1 4 11

J

-5 -2 5
-2 2 8
-7 -3 3I

J

I

J

orders(J)-s(I) e(J)-e(I)

bi oi b
di o b

Figure 4: An instantiation of a pair of repeating event and three relative pro�les.

ment for admissible qualitative pro�les. Relative pro�les of pairs of �nite, non-

overlapping repeating events have monotonicity and tri-regional requirements

for admissibility as well. In addition, it is possible to characterize admissibility

for sets of pro�les in terms of adherence to constraints imposed by two pro�le

operations, inverse and composition. The inverse P�1I;J of a distance pro�le PI;J
where PI;J [i; j] = x(Jj)�y(Ii) is the pro�le PJ;I where PJ;I [j; i] = y(Ii)�x(Jj)

(I and J not necessarily distinct). In matrix format, the inverse of a pro�le

is the negative transposed matrix, i.e., the one that results when the rows and

columns are reversed, and the corresponding distance values negated.

Pro�le composition � is de�ned between pairs of pro�les PI;J ; PJ;K , where

PI;J [i; j] = y(Jj) � x(Ii) and PJ;K [l;m] = x(Km) � z(Jl), x; y; z 2 fs; eg. The
result of PI;J�PJ;K is a pro�le PI;K . A set P of pro�les is admissible with respect

to composition if, for any subset of P consisting of three pro�les of the form

PI;J ; PJ;K ; PI;K PI;K [i; k] = PI;J [i; j] + PJ;K [j; k], for each j = 1 : : : kJk, where
kJk is the number of subintervals of J . An arbitrary set of pro�les for a collection
of non-overlapping repeating events is admissible if each distance pro�le in the

set adheres to the monotonicity requirement for pro�les, each qualitative pro�le

is tri-regional, and the set is admissible with respect to inverse and composition.

Given an admissible pro�le, it may be useful to summarize information con-

tained in it. A pro�le summary is a description about a subset of the values

contained in the pro�le. For example, a sentence like It took all of the three

group meetings �fty days to complete, says something about the speci�c distance

e(gm3)�s(gm1), a single value in a pro�le. Alternatively, saying something like

Each J �nished 5 hours after the completion of some I says something about a

set of distances of the form e(Jj)� e(Ii). Finally, to say none of the I's and J's

overlap is to say something about every value in a qualitative pro�le associated

with I and J .

We say that a pro�le satis�es a summary. For example, the left-most pro�le

in Figure 4 satis�es the summary Every J starts less than six time units after

some I. In general, P satis�es s by virtue of a set of values in P . If PI;J [i; j]

is such a value, then Ii and Jj will be said to be correlated with respect to s.

Finally, a set S of pro�le summaries for a set E of repeating events will be called

a speci�cation of E .
This completes the description of the representational framework that will

be used for both general constraint processing and execution summarization.

The following sections formalize each reasoning task within this framework.

3 Temporal Reasoning with General Constraints

for Planning

To solve the temporal planning problem, a speci�cation (set of summaries) of

pro�les will serve as input to a Repeating Event CSPs (RE-CSPs) [17]. An

RE-CSP is a CSP in which the variables stand for features of pro�les, and

summaries collected into a speci�cation are viewed as constraints. Solving an

RE-CSP consists of generating a set of admissible pro�les that satisfy all the

summaries in the speci�cation.

Here is an example of an RE-CSP. Given a set I of events, the set of variables

in the RE-CSP is de�ned as fN(I); E(I); D(I);8 I 9 J DI;J
x;yg; I; J 2 I; x; y 2

fs; eg. The variable N(I) is used to constrain the number of occurrences of

a repeating event I . Thus the constraint N(I) 2 [3; 6] [[10; 20] states that

the number of occurrences of I is between either 3 and 6, or between 10 and

20. D(I) denotes the duration of an arbitrary occurrence of I ; thus D(I) 2
[4; 6] abbreviates 8 Ii 2 I e(Ii) � s(Ii) 2 [4; 6]. Informally, this says that

each occurrence of I takes between 4 and 6 time units to complete. Third, let

E(I) stand for the distance between the end of the last occurrence of I and

the start of the �rst (called the extent of a repeating event). The constraint

E(I) 2 [30; 50] thus states that all of I should complete within 30 and 50 time

units. Fourth, let f8 I 9 JDI;J
x;y ; x; y 2 fs; egg be a set of variables that stands

for the distance between the start or end of every I and the start or end of some

J . Thus, the constraint 8 I 9 JDI;J
s;s 2 [4; 10] abbreviates the �rst-order formula

8 Ii 2 I 9 Jj 2 J s(Jj) � s(Ii) 2 [4; 10], and says informally that every I

should start between 4 and 10 time units before the start of some J . Finally, a

variable of the form 8I 8J R(I; J), where R is an Allen relation, refers to all the

values of a qualitative matrix. The constraint 8 I 8 Jfb; big(I; J) abbreviates
the expression 8 Ii 2 I 8 Jj 2 J (Ii b Jj) _ (Ii bi Jj), and states that there is

no overlap between any I and any J .

3.1 Solving via concretization into a TCSP

A temporal planning problem can clearly be viewed as the problem of trans-

forming speci�cations into consistent instantiations. A consistent instantiation

is one all of whose pro�les satisfy each of the summaries found in a speci�cation.

We divide the operations involved in transforming speci�cations into temporal

plans into the following two-step operation:

1. \Concretization" a speci�cation, and

2. Solving the resulting CSP.

The notion of concretization was �rst introduced in [17]. Intuitively, it is the

result of transforming an RE-CSP speci�cation by assigning numbers to all

number variables and establishing correlations between pairs of sub-intervals

involved in a binary RE-CSP relation. Formally, for binary relations between

I and J of the form 8I 9JR, a correlation is a total mapping of indices of

subintervals from I into indices of subintervals of J . Thus, correlations assume

that the cardinality of I and J have been established. For example,

S = fN(I) 2 [1; 5];N(J) 2 [3; 6];D(I) 2 [1; 2];8 I 9JDI;J
s;s 2 [2; 4]g

is a simple RE-CSP speci�cation. Given the assignment N(I) = 4;N(J) = 5,

and the relation in S between I and J , a correlation corI!J is a set of pairs of

indices into sub-intervals of I and J . One such correlation can be written

corI!J (1) = 1; corI!J (2) = 1; corI!J(3) = 2; corI!J (4) = 5.

The speci�ed binary relation is transformed, given the number and correlation

assignment, into the conjunction

s(J1)� s(I1) 2 [2; 4] ^ s(J1)� s(I2) 2 [2; 4]^

s(J2)� s(I3) 2 [2; 4] ^ s(J5)� s(I4) 2 [2; 4].

A concretization of a RE-CSP speci�cation S is a description of the result of this

transformation, for all number and relational constraints in S. For example, the

concretization (in predicate calculus notation) for the current example is

N(I) = 4 ^N(J) = 5 ^ s(I1)� s(J1) 2 [2; 4]^

s(I2)� s(J1) 2 [2; 4] ^ : : : ^ s(I4)� s(J5) 2 [2; 4].

Viewing a concretization C as a conjunctive formula, C is consistent if there is

an assignment to each variable x(Ik) that appears in C that makes C true.

By a trigger is meant the set of number assignments and correlations that

produced a given concretization. We write ST = C to describe the result of ap-

plying a trigger T to a speci�cation S. Since each RE-CSP speci�cation induces

a set of triggers, there is a one-to-many relationship between speci�cations and

concretizations. Since not all resulting concretizations are consistent, the search

problem arises of �nding a trigger (or all triggers) that produces a consistent

concretization. Furthermore, as shown in [14], the size of the search space of

triggers is potentially very large, dominated by the number of possible ways of

mapping �nite sets into �nite sets as implied by the 89 logical form of the binary

constraints. The skeletal form of an algorithm for determining the consistency

of an RE-CSP is the following, where T is the set of all triggers of S.

input : a speci�cation S of an RE-CSP;

output : a consistent concretization C if one exists.

begin

for each T 2 T
C := ST ;

if consistent(C) then return C;

return fail

end

Once a consistent concretization has been found, the resulting problem can be

solved by standard methods. For example, a concretization of certain types of

RE-CSP can be viewed as a Simple Temporal Problem (STP) [4], as demon-

strated in [15]. The concretization into a STN, for the speci�cation S found

in the previous section, and using the example trigger discussed there, is found

in Figure 5. In the �gure, there are four pairs of nodes representing start and

end points of I , and �ve for J . There are also labeled arcs between the end

points and the start points of J , concretizing the constraint on duration found

in the speci�cation. Finally, there are labeled arcs between start points of J and

those of I , in accordance with the mapping corI!J found in the trigger. The

intervals on the edges are those found in the speci�cation for the corresponding

constraint.

Although solving STPs can be done e�ectively, the overall problem of solving

RE-CSPs, which involves the former as a sub-problem, is demonstratively NP-

hard, except in the simplest of problems. In particular, the general problem

of solving RE-CSPs with relational constraints is NP-hard, as demonstrated in

[15].

3.2 Solving RE-CSPs via Clustered Temporal Networks

Concretizations using STPs are \
at" in the sense of eliminating the distinction

between intervals that are part of the same repeating event and those that are

not. With such concretizations the operations de�ned on pro�les to determine

admissibility are \compiled away" into propagation operations on TCSP net-

works. This section introduces an alternative representation that generalizes

the notion of pro�le and manipulates them explicitly.

[1,2] [1,2] [1,2] [1,2] [1,2]

I1s I2s I3s I4s

I1e I2e I3e I4e

J2s J3s J4s J5s

J1e J3e J5e

[2,4] [2,4]

J2e J4e

J1s

[2,4]

[2,4]

Figure 5: Concretization of a speci�cation into a STN.

This alternative representation is based on the notion of a partial pro�le.

A partial pro�le is a pro�le whose cells contain interval values. They will be

viewed as labels of edges that connect nodes of a network called a Clustered

Temporal Network (CTN). Each node in a CTN represents a single repeating

event. Triggers de�ne the dimension of each partial pro�le, and constrain a

subset of pro�le values, based on the correlations established in the triggers.

Inverse and composition can be de�ned on partial pro�les, generalizing these

operations as de�ned above for complete pro�les.

To illustrate a CTN, consider the following speci�cation:

I is a non-overlapping repeating event with three occurrences. J has

one occurrence. All of the durations of the Is and J is one time unit,

and there is a one time unit gap between successive occurrences of

the Is. The start of J is one time unit after the start of the �rst

I , one time unit before the start of the second I , and one time unit

after the start of the third I .

This speci�cation derives from a class of RE-CSP in which there are, in addi-

tion to the variables introduced earlier, other variables which stand for speci�c

pro�le elements; e.g., DI;J
s;s [1; 2] stands for the distance s(J2)� s(I1). This spec-

i�cation is inconsistent. To detect its inconsistency in a STN concretization,

a Single Pairs Shortest Path algorithm is applied, wherein the inconsistency is

I J

[1,1]
[-1,-1]
[1,1]

[1,1]
 [1,1]
 [1,1]

J

I

I

I

Figure 6: Concretization of inconsistent speci�cation into a CTN.

determined in O(n3) steps. By contrast, Figure 6 displays the concretization of

the speci�cation into a CTN. There are two nodes in the �gure, representing

the 2 repeating events. Two edges are labeled by partial pro�les, a 3� 3 matrix

representing duration constraints for occurrences of I (the diagonal), and the

other a 3 � 1 matrix representing the binary constraint between the Is and J .

Missing pro�le values are assumed to have the value [�1;1], signifying no

distance constraint between them.

Detecting inconsistency in CTNs can be performed by exploiting the admis-

sibility requirements for pro�les discussed earlier. In this example, clearly the

monotonicity requirement is violated for the partial pro�le on the edge between

I and J . For partial pro�les, this requirement can be roughly stated as follows:

there must exist a complete pro�le (i.e., ones with atomic values) selected from

the intervals in the partial pro�le, which satis�es the requirement. Since the

only solution for the pro�le in question is one in which the values decrease, then

increase, the monotonicity requirement is violated. To check for violation of the

monotonicity and tri-regional admissibility requirements, O(N2M2) checks are

made, where N is the number of nodes of the CTN, andM is the largest number

of occurrences of any repeating event. This compares with O(n3) checks on a

STP, where n is the number of start or end points of all the occurrences of any

repeating event. Comparing these worst-case estimates suggests that the ability

of CTNs to outperform STPs in practice depends on the ability to \cluster" the

reasoning problem into one involving a small number of repeating events. In this

case, N , the size of the CTN, will be small, and some e�ciency in determining

consistency is expected.

Checking for violations of the monotonicity or tri-regional requirements for

admissibility is analogous to performing arc consistency in constraint networks,

insofar as only paths of length one are examined. A CTN that adheres to

monotonicity requirements is not necessarily a network containing only admis-

sible pro�les; the operations of composition and converse must also be preserved.

To make a single computation of P1 � P2, where P1; P2 are partial pro�les, a

total of O(M3) comparisons must be made; thus, an entire CTN is examined in

O(N2M3) time. Again, if the problem exhibits su�cient clustering, in practice

this operation might be performed e�ciently.

In this section, we have shown how it is possible to extend existing constraint-

based temporal reasoning frameworks for planning to incorporate general tem-

poral constraints concerning the number of time an event is to occur, as well

as constraints on the sorts of temporal patterns that can be exhibited by the

events. This framework will address the de�ciencies faced by existing systems

in solving the sorts of problems that were described at the outset. The focus to

this point has been on reasoning for the purpose of generating pro�les that col-

lectively satisfy a collection of summaries. This semantic relationship between

summaries and pro�les has a converse relationship which forms the basis for

reasoning from a pro�le or set of pro�les, to a summary. This relationship is

examined in the next section.

4 Mining Temporal Information

Thus far, we have focused on the use of general temporal knowledge to gen-

erate temporal plans from requests formalized as RE-CSP speci�cations. The

focus in this section turns to the problem of extracting useful information from

the results of executing plans. The simple temporal ontology introduced above

recognizes events as the sole entity associated with time, such time being ex-

pressed as durations or ordering relationships. A temporal domain model is a

set of propositions expressing duration and ordering constraints over a set of

events. The interest in this section is using information about executions to

re�ne a temporal domain model, or to infer new information.

A number of reasoning tasks �t into the research area referred to as mining

temporal data, including event detection [10] (inferring the time certain impor-

tant events occur), trend discovery [6] (mining signi�cant changes in the value

of some parameter) and activity monitoring [8] (noticing when a change in the

behavior of something has occurred). The interest in this paper has been on

pure temporal reasoning, which in the area of data mining will include mining

duration and temporal ordering information. In the KDD literature, this is

often referred to as mining interesting episodes in temporal data [12].

The problem to be considered here requires a system to take an execution

log consisting of an instantiation of a executed plan (i.e. a set of pairings of

times to events), and generate useful summaries of the temporal information

contained in it, or verify that some proposition, expressed as general temporal

knowledge by a human user, is true. This summary will be expressed in the

same language as that of the temporal domain model; hence summaries can

be used to update the model itself. For example, a summary might detect a

precedence ordering between events that was previously not expressed in the

domain model. Similarly, observed distances between pairs of events can be

expressed as a summary and added as new knowledge to the domain model.

Consequently, the system is continuously improving the model of time used to

generate plans as the result of its own planning activities.

4.1 Mining as operations on pro�les

Instantiations are
at representations of temporal data, insofar as they have a

representation as a table of rows and columns. Pro�les provide an intermediate

level of structure to these data by providing concise representations of distance

and ordering information. Two kinds of grouping occur in the transition from

instantiations to pro�les: events are paired o� based on their type, and also

paired o� based on end points. This transformation allows for patterns to be

revealed. Summaries, which are the results of further operations on pro�les, are

concise expressions of the patterns revealed in pro�les.

Recall the operations of inversion and composition of pro�les introduced

earlier. These were used in the de�nition of admissible pro�les, which formalized

the solution to the planning problem involving general temporal constraints. To

this set of operations we introduce others that produce summaries out of pro�les.

First, we distinguish between two kinds of summaries: value and correlation.

Let PO be the space of admissible order pro�les, and PD be the space of admis-

sible distance pro�les. One kind of simple value summary can be viewed as a

function VD : PD ! P (I), i.e. from the space of possible distance pro�les to a

subset of the Integers. Informally, these summaries return a subset of the values

in the distance pro�le. By contrast, qualitative value summaries are functions

of the form VO : PO ! P (A), where A is the set of Allen relations. Thus,

these summaries return the set of Allen relations in a pro�le. It is assumed

that there are functions for further modifying the sets returned by simple value

summary. For example, let A be a set of the Integers, and let min(A);max(A)

be the minimum and maximum of the values in A. Let the function range(A)

return the interval [min(A);max(A)], i.e., the range of values within A. Simi-

larly, given a set A of Allen relations in a pro�le, let overlaps� some(A) return

the set of Allen relations in A that are not b or bi. These auxiliary functions

provide additional means of summarizing the values in the set returned by a

value summary.

Correlation summaries, by contrast, will be viewed as operations that return

sub-pro�les of a pro�le. If a pro�le is viewed as a set of triples hIi; Jj ; vali, a
sub-pro�le of P is any subset of this set of tuples. Hence, sub-pro�les are

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A

B

Figure 7: An instantiation of two repeating events

m b b b b

bi si b b b

bi bi bi � b

bi bi bi bi s

1 3 6 9 12

-2 0 3 6 9

-7 -5 -2 1 4

-11 -9 -6 -3 0

Figure 8: Order and distance (s(B)� s(A)) pro�les for example in Figure 7

pro�les, and correlation summaries are functions C : P ! P , i.e., from pro�les

to pro�les.

Here are some examples of each kind of summary. The instantiation in Fig-

ure 7 will be used to illustrate. Figure 8 contains the order and one distance

pro�le generated from the instantiation. One example of a simple qualitative

value summary would be the set of all relationships between A and B.

This is a function that, given an order pro�le PO for A and B, returns the set

of Allen relations in PO ; in the example, this set would be fb; bi;m; si; fi; sg.
Similarly, the summary the distance between the start of some occur-

rence of A and the start of some occurrence of B is a value summary

that returns f�11;�9;�7;�6;�5;�3;�2; 0; 1; 3; 4; 6; 9; 12g, i.e., all the values

in the distance pro�le. An example of a simple correlation summary would be:

all the ordering relations between the �rst and second occurrences

of A and B. This summary would return a 2� 2 sub-pro�le consisting of the

upper left part of the order pro�le in the �gure.

Most summaries of interest can be viewed as a series of compositions of

value and correlation summaries. For example, consider the summary: the

range of distances between the start of every occurrence of A and the

start of the occurrence of B in closest proximity. Intuitively, this is the

result of examining each row of the distance pro�le in Figure 8, extracting the

value(s) closest to 0, expressing the result as an range (interval) of values; in the

example, the result would be [0; 1]. Similarly, the set of pairs of occurrences

of As and Bs in closest proximity, and the distances between their

start times, can be viewed as a correlation summary returning the sub-pro�le

comprised of elements along a diagonal of the input pro�le; speci�cally, the

set of triples fhA1; B1; 1i; hA2; B2; 0i; hA3; B4; 1i; hA4; B5; 0i. Notice that this

summary reveals the pattern of alternating distances of 1 and 0 between start

times of the correlated occurrences, potentially of interest to the viewer of the

data.

4.2 Mining interesting temporal episodes

A simple two-step procedure for mining interesting episodes from an instantia-

tion is, �rst, to generate a pro�le from the instantiation, and second, produce

(or verify the truth of) a summary from information found in the pro�le. This

basic procedure can be re�ned based on the degree to which the user guides the

mining process. Later in this section, we sample from a range of degrees of user

guidance.

First, notice that generating a single pro�le from an instantiation takesO(n2)

time, where n is the number of occurrences of the event with the most occur-

rences. More speci�cally, if E has n occurrence, and F has m occurrences, it

clearly takes n � m di�erence calculations to generate a distance pro�le. For

order pro�les, each entry is generated by comparing both end points of one in-

terval with both end points of another. Hence, the overall cost of populating an

order pro�le is 4(m�n). This cost can be reduced if E and F are both sequences

of non-overlapping occurrences; then, it is possible to apply admissibility cri-

teria for pro�les to generate values directly. For example, truths such as if In
is before Jm, then it is before every occurrence of J after Jm can be applied to

determine some of the entries without explicitly comparing end points. Thus,

in the �rst row of the order table in Figure 8, once the �rst b is detected, the

remaining values in the row must be b in order for the pro�le to be admissible.

In e�ect, the comparisons are thereby limited to entries that will be along the

diagonal of the pro�le.

Once the pro�le has been built for the indicated events, the remainder of the

calculation involves investigating the temporal patterns exhibited by them. Let

us consider three degrees of user guidance in the process: complete, partial, and

none. Complete guidance occurs when a user wishes to know whether a pro�le

satis�es a summary. Recall that a distance summary consists of the following

parts:

1. A pair of events A;B;

2. A mapping expressed as a pair of quanti�ers, one each for occurrences of

A or B;

3. A pair of end points x; y 2 fs; eg; and

4. An interval [l; b] of values

An order summary substitutes a set of Allen relations for items (3) and (4) in

the list. Therefore, a completely guided mining activity would require the user

to supply each of the four (3) components of a distance (order) summary. Notice

that the entire process of verifying the truth of a distance or order summary can

be conducted e�ciently for many of the examples we've been presenting. For

example, the interest might be in determining how often the start of some B

immediately (i.e. within 1 time unit) follows the end of some A. This involves

examining each row of the distance pro�le in Figure 8, and counting how many

times the value 1 appears. In general, two complete perusal of a matrix su�ces

for veri�cation, one for creating the pro�le, the other for verifying the sum-

mary. (A more e�cient procedure would interleave the creation and veri�cation

process.)

A simple way of viewing partial user guidance is when a subset of the 4 com-

ponents of a distance summary (or the 3 of an order summary) are left unspec-

i�ed. Once this happens, issues related to criteria for the automatic detection

of interesting temporal information arise. What makes temporal (duration or

order) information \interesting"? We distinguish between two criteria.

First, there is a tendency for occurrences in close proximity to be the focus

of mining episodes. For example, the gap between consecutive occurrences of

the same event tend to be more interesting than the gap between occurrences

separated by other occurrences. Similarly, occurrences that happen around oc-

currences of other events tend to hold more interest than pairs of occurrences

separated by longer distances. The reason is usually due to the fact that mining

temporal summaries is often related to the goal of discovering causal relation-

ships, and these relationships tend to be revealed among occurrences in close

proximity. For example, the occurrence of high fever following the adminis-

tration of a certain treatment would be interesting information for a physician

(from a causal standpoint) only if the events occur in close proximity; if the two

events are separated by more than, say a few days, a di�erent causal relationship

(involving other events) would be suggested.

Second, there is interest in temporal relationships only if there is a duration

or order information that falls into a pattern. A number of patterns are possible,

involving frequency, periodicity, or simple repetition. If fever follows a therapy

treatment with low frequency, there is less interest than if it is followed with

high frequency. Similarly, if there is no overlap between certain events, say,

between occurrences of maintenance tasks for di�erent power generation units,

then this might �t the criteria for being interesting. Sometimes, it is the range

of values that is interesting; for example, if the set of all the durations between

two events is in [0; 1] a causal relationship between the occurrences might be

suggested.

What are the requirements for a system that can �nd interesting temporal

patterns without guidance of any kind? In addition to a temporal model of

proximity and frequency, a completely automated temporal knowledge discovery

system will need a model of \interesting pairings" of temporal entities. This

amounts to having a robust model of what temporal entities are naturally paired

with others. For example, in the medical domain, what makes administering

drug events and fever states in patients conducive to associations is the fact that

there may be causal relations between events similar to the drug administering

event and the onset of fever. Notice that there are O(
�
M
2

�
) pro�les associated

with an instantiation of M events. Hence, the task of generating interesting

pairings from raw data grows exponentially with the number of event types. The

work of Shahar [21] addresses the problem of building an ontology of temporal

entities which guides the automated tool in the search of interesting pairings.

Finally, the preceding examples have been restricted to cases which re-

quire producing information about binary relationships between events. This

treatment can be extended to patterns involving more than 2 events. For

example, suppose the interest is in determining the frequency of the pattern

s(Ii)� s(Jj) 2 [1; 1]^ s(Jj)� s(Kk) 2 [1; 1]. This pattern is that of the start of

an I immediately following the start of a J which, in turn, immediately follows

the start of some K. Clearly, this query can be solved by creating pro�les for

both s(Ii)� s(Jj) and s(Jj)� s(Kk), and examining the values therein. In gen-

eral, in many cases, it is possible to view the task of �nding interesting episodes

among a set of n > 2 events as a set of examinations of (binary) pro�les.

This section has described informally the process of extracting useful sum-

maries of temporal information in the form of instantiations of events. The

summaries arise from a two step procedure of, �rst, extracting the relevant pro-

�le(s), and second, extracting general temporal knowledge from them. Since

the knowledge extracted is of the same logical form as the knowledge used to

generate temporal plans, the extracted knowledge can be used to update the

knowledge found in the temporal domain model used by the planner. Conse-

quently, we have �nished our description of a closed-loop system for temporal

planning and plan execution analysis.

5 Conclusions

This paper has proposed a single representation of temporal information for sup-

porting a more robust framework for formulating planning problems, as well as

to formulate summaries of execution traces of plans from execution logs stored as

temporal databases. This framework has the potential for proving useful within

systems that combine planning and plan execution, which are becoming more

common as AI technology continues to mature. The approach to realizing this

framework builds upon existing frameworks based on the CSP representation

of temporal reasoning problems. The proposed framework is based on a simple,

intuitive distinction between temporal speci�cations, summaries, pro�les and

instantiations. The operations that transform speci�cations into instantiations

to solve planning problems can be inverted to formulate and solve the problem

of mining interesting temporal information.

The framework proposed in this paper uses the classical constraint-based

representation of temporal knowledge. The classical framework considers all

solutions to be of equal value with respect to satisfying the requirements for

solving the problem, whereas the information extracted from the trace data

from executions might suggest a ordering of solutions based on frequency of

occurrence. For example, although the temporal domain model might assert

that a certain pair of events can happen between 5 and 10 time units apart, based

on observations it can be determined that the distance is usually either 9 or 10

units apart. This additional knowledge could be used in the plan generation

phase to prefer solutions that re
ect past observations such as this. There

are generalizations of of the classical CSP framework, e.g. the Semiring CSP

representation [2], that allow for the generation of solutions to CSPs that adhere

to local preference criteria. We are currently investigating such extensions of

the proposed framework.

6 Acknowledgments

The authors thank Yuval Shahar, Shubha Chakravarty, and Paul Morris for

stimulating discussions of themes discussed in this paper.

References

[1] J. Allen. Maintaining knowledge about temporal intervals. In Readings in

Knowledge Representation, pages 510{521, Morgan Kaufman Publishers,

Inc., 1983.

[2] S. Bistarelli, U. Montanari, and F. Rossi Semiring-based Constraint Solving

and Optimization. Journal of the ACM, 44(2):201-236, March, 1997.

[3] J. Bresina. Telescope loading: A problem reduction approach. In Pro-

ceedings of the Third International Symposium on Arti�cial Intelligence,

Robotics, and Automation for Space, Pasadena, CA, Jet Propulsion Lab,

1994.

[4] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Arti�cial

Intelligence, 49(1-3):61{95, 1991.

[5] M. desJardins, E. Durfee, C. Ortiz Jr, and M. Wolverton. A survey of re-

search in distributed, continual planning. AI Magazine, 20(4):13{22, Win-

ter 1999.

[6] G. Dong and J. Li. E�cient mining of emerging patterns: Discovering

trends and di�erences. In Proceedings of KDD-99, pages 43{52, San Diego,

CA, USA, 1999.

[7] H. Eriksson, Y. Shahar, S. W. Tu, A. R. Puerta, and M. A. Musen. Task

modeling with reusable problem-solving methods. Arti�cial Intelligence,

79(2):293{326, 1995.

[8] T. Fawcett and F. Provost. Activity monitoring: Noticing interesting

changes in behavior. In Proceedings of KDD-99, pages 53{62, San Diego,

CA, USA, 1999.

[9] D. Frost and R. Dechter. Maintenance scheduling problems as benchmarks

for constraint algorithms. Manuscript, 2000.

[10] V. Guralnik and J. Srivastava. Event detection from time series data. In

Proceedings of KDD-99, pages 33{42, San Diego, CA, USA, 1999.

[11] F. Kabanza, J-M. Stevenne, and P. Wolper. Handling in�nite temporal

data. Journal of Computer and System Science, 51:3{17, 1995.

[12] H. Mannila, H. Toivonen, and A. I. Verkamo. Discovering frequent episodes

in sequences. In Proceedings of the First Int'l Conference on Knowledge

Discovery and Data Mining, pages 210{215, Montreal, Quebec, Canada,

1995.

[13] R. Morris and L. Khatib. An interval-based temporal relational calculus

for events with gaps. Journal of Experimental and Theoretical Arti�cial

Intelligence, 3:87{107, 1991.

[14] R. Morris and L. Khatib. Constraint reasoning about repeating events: Sat-

isfaction and optimization. Computational Intelligence, 16(5), July 2000.

[15] R. Morris and P. Morris. On the complexity of reasoning about repeating

events. In Proceedings of the 7th International Conference of Knowledge

Representation and Reasoning, 2000.

[16] R. Morris, W. Shoa� and L. Khatib. Path consistency in a network of

non-convex intervals. In Proceedings of the International Joint Conference

on Arti�cial Intelligence (IJCAI), pages 124{134, 1995.

[17] R. Morris, W. Shoa� and L. Khatib. Domain independent temporal rea-

soning about repeating events. Computational Intelligence, 16(2), 1996.

[18] N. Muscettola, P. Nayak, B. Pell, and B. Williams. Remote agent: to boldly

go where no ai system has gone before. Arti�cial Intelligence, 103:5{48,

1998.

[19] B. Padmanabham and A. Tuzhilin. Pattern discovery in temporal

databases: A temporal logic approach. In Proceedings of the Second Int'l

Conference on Knowledge Discovery and Data Mining, pages 351{354,

1996.

[20] Y. Shahar. A framework for knowledge-based temporal abstraction. Arti-

�cial Intelligence, 90(1-2):79{133, 1997.

[21] Y. Shahar and C. Cheng. Model-based visualization of temporal abstrac-

tions. Computational Intelligence, 16(5), 2000.

[22] Y. Shahar and M. A. Musen. Knowledge-based temporal abstraction in

clinical domains. Arti�cial Intelligence in Medicine, 8(3):267{298, 1996.

[23] Y. Shoham. Temporal logics in ai: Semantical and ontological considera-

tions. Arti�cial Intelligence, 33(1):89{104, 1987.

[24] P. Wolper. Temporal logic can be more expressive. Information and Con-

trol, 56:72{99, 1983.

